
Pathdiag: Automated TCP Diagnosis�

Matt Mathis1, John Heffner1, Peter O’Neil2,3, and Pete Siemsen2

1 Pittsburgh Supercomputing Center
2 National Center for Atmospheric Research

3 Mid-Atlantic Crossroads

Abstract. This paper describes a tool to diagnose network performance
problems commonly affecting TCP-based applications. The tool, path-
diag, runs under a web server framework to provide non-expert network
users with one-click diagnostic testing, tuning support and repair in-
structions. It diagnoses many causes of poor network performance using
Web100 statistics and TCP performance models to overcome the lack of
otherwise identifiable symptoms.

1 Introduction

By design, the TCP/IP hourglass [4] hides the details of the network and the
application from each other. This property is critical to the ongoing evolution of
the Internet because it permits applications and the underlying network infras-
tructure to evolve independently. However, it also obscures all network flaws.
Since TCP silently compensates for flaws, for example by retransmitting lost
data, the only symptom of most problems is reduced performance. This “symp-
tom hiding” property was the motivation behind the Web100 project [17], which
developed the TCP extended statistics MIB [16] to expose TCP protocol events
that are normally hidden from the application. A MIB is a formal specification
of a set of management variables that can be accessed by SNMP or other lower
overhead mechanisms. Experimental prototypes of the MIB have been imple-
mented in a number of operating systems, including Linux [17] and Microsoft
Windows Vista [23].

Diagnostic efforts are further complicated by another property of TCP: the
symptoms of most flaws scale by the flow’s round-trip time (RTT). Note that
for window-based protocols, performance models generally have an RTT term in
the denominator. For example, insufficient TCP buffer space in either the sender
or receiver, or background (non-congested) packet loss all cause TCP to have a
constant average window size and performance that is inversely proportional to
the RTT.

This poorly understood property leads to faulty reasoning about diagnostic
results. A simple throughput test on a short local section of a path with minor
flaws is likely to yield good results. The same test run over a longer path con-
taining the same local flaws is likely to yield poor results. The näıve conclusion

� This work was supported by the National Science Foundation, Grant ANI–0334061.

M. Claypool and S. Uhlig (Eds.): PAM 2008, LNCS 4979, pp. 152–161, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Pathdiag: Automated TCP Diagnosis 153

would be that the local section is flawless, and the problem must be present
in the longer path section. This “symptom scaling” property of TCP leads to
incorrect inductive reasoning about flaws, and significantly contributes to the
difficulty of solving end-to-end Internet performance problems.

This paper describes a tool, pathdiag, that uses TCP performance modeling to
extrapolate the impact of local host and network flaws on applications running
over long paths. The tool analyzes a number of key metrics of the local host
and path and uses TCP performance models to determine thresholds for these
metrics based on the stated application performance goals. Pathdiag reliably
detects flaws that have no user-noticeable symptoms over a short path. It reports
the problems and suggests remedies.

1.1 Motivation

Network performance has increased by an order of magnitude roughly every
four years over the last two decades. Networking experts are usually quick to
demonstrate the full data rate on each new network technology [11]. However,
typical users experience data rates much lower than those seen by experts, and
the gap is widening.

Internet2 has measured the performance of TCP bulk flows over their back-
bone since the beginning of 2002 [12]. As of August 2007, the median performance
across their 10 Gb/s network was only about 3.4 Mb/s. Historical data shows
that this rate has taken six years to double.

A small number of flows get very good performance. About 0.1% are faster
than 100 Mb/s, and of those about half are close to 1 Gb/s. Since the backbone
carries a significant number of very high-rate, long-distance flows, we know that
it has to be free from flaws that would otherwise affect these sensitive flows.

The design goal of pathdiag is to help non-expert users attain better per-
formance by easily and accurately diagnosing common flaws. These flaws are
generally near the edge of the network where debugging efforts are subject to
faulty inductive reasoning due to symptom scaling.

2 The Pathdiag Tool

Suppose a user tries to get good performance from an application that relies
on bulk TCP data transfers from a remote server, as shown in Figure 1. The
user’s application client C, needs data from the application server S across a
long network path that includes both a short local section and a long-haul back-
bone. The local section is assumed to have an RTT that is no more than a few
milliseconds. The long-haul backbone can be any length, transcontinental (100
ms RTT) or even global (300 ms RTT).

The user can test the local section of the path and the client configuration by
visiting a pathdiag server, PS, with a java-enabled browser. Ideally, PS would
be located near the connection between the local network and the backbone.
The pathdiag server tests the local path and client configuration and generates
a report in the form of a new web page, displayed by the user’s browser.

154 M. Mathis et al.

S:
Remote server

PS:
Pathdiag server

C:
Client

Backbone
(100 ms)

Campus Network
(< 1ms)

Flaw

Fig. 1. Canonical pathdiag setup

Pathdiag estimates whether the local client and local path is sufficient to meet
the target1 data rate if the backbone were replaced by an ideal network with
the same RTT. To do this, the user must provide two parameters: the target
RTT from C to S and the target data rate for the application. If users do not
know these parameters, the default values, 90 Mb/s over a 20 ms path, are
appropriate for most university users. The report presents various metrics of the
local client and local path, and indicates if they are within the thresholds of
TCP performance models. It also suggests corrective action, if needed.

The components of the pathdiag server are shown in Figure 2. The browser
loads the diagnostic client, which communicates with the server via a simple
request-response control protocol. A TCP connection is established from the
traffic receiver in the diagnostic client to the traffic generator. The measurement
engine uses the Web100 prototype of the extended statistics MIB [16] to manip-
ulate and instrument the TCP connection at the generator. An analysis engine
evaluates the measurements and extrapolates the results to predict the impact
of the local path on the user’s application.2

2.1 The Measurement Engine

The measurement engine collects Web100 data in a series of sample intervals.
For each interval, it adjusts the window size of the diagnostic TCP connection in
discrete steps, and then captures the entire set of Web100 variables at the end of
each sample. It computes several metrics during each test, the most important
of which are DataRate, LossRate, RTT and Power (DataRate/RTT). These
are shown as functions of the window size for a typical link in Figure 3. These
plots resemble those generated by “Windowed Ping” (mping) [14], a UDP-based
tool that uses a similar measurement algorithm.

The measurement engine employs an adaptive scanner to select the window
size for each sample interval. To minimize the total time required for the test,
1 We use “target” when referring to components of the remote application and their

parameters, such as end-to-end target RTT, desired target data rate and their prod-
uct, the target window size.

2 To support systems that cannot run a Java–enabled web browser, the “C” source
for a portable command-line client is also published by the diagnostic server.

Pathdiag: Automated TCP Diagnosis 155

Web server

Diagnostic server

Web browser HTTP

Java diagnostic
client

Control protocol

Traffic receiver

Pathdiag

Measurement
engine

Analysis
engine

Parameters Results

N
et

w
or

k

Client Server

Web100

Traffic
generator

Fig. 2. Block diagram of the pathdiag client-server framework

data is collected in multiple phases that emphasize specific properties of the
network. A coarse scan across the entire window range is used to approximately
locate two important window sizes: the onset of queuing and the maximum
window size. Ranges around these values are then rescanned at progressively
higher resolutions. In Figure 3, the fine scans can be seen clearly around window
sizes of 30 and 80 packets, respectively. The maximum window sizes for scans
are determined when TCP congestion control or an end-host limitation prevents
the window from rising for three consecutive sample intervals.

Several network path metrics are calculated directly from the raw data as
it is collected. MaxDataRate and MinRTT yield a measurement of the test
path’s bandwidth-delay product. MaxPowerWindow is the window size with
the maximum Power, indicating the onset of queuing. The MaxWindow is the
maximum amount of unacknowledged data that the network held. The difference
between the MaxWindow and MaxPowerWindow is an estimate of the queue
buffer space at the bottleneck.

BackgroundLossRate is calculated from the total packet losses from all sam-
ple intervals below the onset of queuing, as indicated by the MaxPowerWindow.
It reflects bit errors and other losses that are not related to network congestion.
If the adaptive scans do not provide sufficient loss data for the test described
in the next section, additional loss data is collected at a fixed window size just
below the onset of queuing. In general, the measurement engine collects enough
data to observe the loss rate at the scale needed by AIMD congestion control to
reach the target window size.

2.2 The Analysis Engine

The analysis engine uses the two user-supplied parameters, end-to-end RTT
and desired application data rate to evaluate the results from the measurement
engine and produce a diagnostic report, as shown in Figure 4.

156 M. Mathis et al.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

D
at

a
R

at
e

(M
b/

s)

Window (packets)

(a) Data rate vs. window size. Window
sizes less than 30 were too small to fill the
path, so the data rate was proportional
to window size. Window sizes between 30
and 80 packets show data rates that were
near the bottleneck rate, about 94 Mb/s.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

lo
ss

es
 (

se
gm

en
ts

)

Window (packets)

(b) Loss rate vs. window size. Above 80
packets, the link started to exhibit persis-
tent loss. Given the small RTT (about 2.5
ms), TCP can recover from these losses
with only a slight reduction in through-
put.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

R
T

T
 (

m
s)

Window (packets)

(c) RTT vs. window size. RTT was es-
sentially constant at small window sizes.
Above a window of 30, each additional
packet in TCP’s window was added to a
standing queue at the bottleneck, and the
RTT increased linearly with window size.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

P
ow

er
 (

se
gs

/s
ec

/s
ec

)

Window (packets)

(d) Power vs. window size. Power reached
a maximum at the point where the bot-
tleneck crossed over from under-full (the
link had idle time) to over-full (there was
standing data in the queue), in some sense
the ideal TCP operating point.

Fig. 3. Plots of scan results

The results in the generated report are grouped hierarchically. The base of the
report shows test parameters and conditions. Test results are grouped into the
following categories: local host (client) configuration, path measurements, and
tester (server) consistency checks. Path measurements are further divided into
data rate, loss rate, network buffering, duplex mismatch tests, and suggestions
for alternate test parameters.

Test results are labeled and color-coded for easy reading. All failing tests
(red) include a “corrective action” (starting with “>”) indicating what needs
to be fixed and how to fix it. In general, failing tests are guaranteed to be
performance show-stoppers - the application will fail to meet the target data
rate over the full end-to-end path as long as there are failing tests. The help for

Pathdiag: Automated TCP Diagnosis 157

Test conditions
Tester: (none) (192.88.115.171) [?]
Target: (none) (xxx.xxx.xxx.xxx) [?]
Logfile base name: xxxxx.xxxx.xxx:xxxx-xx-xx-xx:xx:xx [?]
This report is based on a 90 Mb/s target application data rate [?]
This report is based on a 20 ms Round-Trip-Time (RTT) to the target application [?]
The Round Trip Time for this path section is 2.518223 ms.
The Maximum Segment Size for this path section is 1448 Bytes. [?]

Target host TCP configuration test: Fail! [?]
Warning: TCP connection is not using SACK. [?]
Critical Failure: Received window scale is 2, it should be 3. [?]
The maximum receiver window (128k) is too small for this application (and/or some tests). [?]
Diagnosis: The target (client) is not properly configured. [?]
> See TCP tuning instructions at http://www.psc.edu/networking/projects/tcptune/ [?]

Path measurements [?]

Data rate test: Pass! [?]
Pass data rate check: maximum data rate was 93.900110 Mb/s [?]

Loss rate test: Pass! [?]
Pass: measured loss rate 0.000848% (117889 packets between loss events). [?]
FYI: To get 90 Mb/s with a 1448 byte MSS on a 20 ms path the total end-to-end loss budget is 0.002029% (49275 packets between losses). [?]

Suggestions for alternate tests
FYI: This path may even pass with a more strenuous application: [?]
 Try rate=90 Mb/s, rtt=30 ms
 Try rate=93 Mb/s, rtt=29 ms
Or if you can raise the MTU: [?]
 Try rate=90 Mb/s, rtt=192 ms, mtu=9000 bytes
 Try rate=93 Mb/s, rtt=184 ms, mtu=9000 bytes

Network buffering test: Warning! [?]
This test did not complete due to other problems with the path, target or tester.
> Correct other problems first, and then rerun this test. [?]
Estimated queue size is at least: Pkts: 64 Bytes: 92672
This is probably an underestimate of the actual queue size. [?]
This corresponds to a 7.737751 ms drain time. [?]
To get 90 Mb/s with on a 20 ms path, you need 225000 bytes of buffer space. [?]

Tester validation: Pass! [?]
No internal tester problems were detected.
Tester version: $Id: xxxxx.xxxx.xxx:xxxx-xx-xx-xx:xx:xx.html,v 1.1 2007/08/06 18:40:24 mathis Exp $

Fig. 4. Sample report from the same data as Figure 3

passing tests (green) indicates any caveats about limitations of the tests. Tests
that are inconclusive for some reason yield orange warning messages. These
include flaws that might not cause performance problems and tests that did not
complete due to other failing tests. Messages in black are informational and are
of most value to expert users. The analysis engine can detect 21 different failure
conditions and 16 possible warnings.

Host Configuration. The host configuration tests confirm that TCP settings
on the client are appropriate for target parameters. Pathdiag checks the options
negotiated on the SYN and SYN-ACK. The Window Scale option [13] must have
negotiated an appropriate value or it is flagged as a critical failure. It also checks
if TCP Selective Acknowledgments (SACK) [18] or TCP Timestamps [13] are
enabled.

A key test is whether the TCP receive buffer is larger than the target window.
Since many modern operating systems adaptively size their receive buffers [9,
5, 23], it is necessary to check the announced receive window at extreme points
of the measurements (peak data rate or window size). There are several corner
cases that the analysis engine needs to consider. If the flow is limited by the
receive window, and the maximum observed receive window for the entire run
is less than the target window then the receiver never announced enough buffer
space for the path, and the buffer is too small. If the receiver reduced its window
at the extreme points, then receiver is not fast enough, which is a different
problem. Also, since the section of the path under test is normally shorter than

158 M. Mathis et al.

the target path, it might be correct for an adaptive receive window to have a
maximum size that is smaller than the target window. In this case, pathdiag
cannot make a strong conclusion about the receive buffer size. However, in most
default configurations, hosts that announce sufficient receiver window for the
queue space test and pass the window scale check will also have sufficient receive
buffer space.

Path Measurements. Pathdiag tests three parameters of the local path: max-
imum data rate, background loss rate, and bottleneck queue size. It also has a
special-case test for Ethernet duplex mismatch [21], which is only invoked if the
signature is detected.

Normally, the data rate test fails only if the tested path is not short enough,
the user is mistaken about the properties of the path, or there is a serious problem
such as a media-type negotiation failure. With a short RTT, TCP can overcome
most flaws with only a minor performance reduction. As a consequence, most
flaws do not mask other flaws when the path is short enough, so a single test
run can detect multiple flaws.

Pathdiag measures the background, non-congested loss rate at a window that
is slightly smaller than the window necessary to cause congestion on the link. A
failure is reported if the measured loss rate is greater than the rate calculated
by a TCP performance model [19] applied to the specified RTT and data rate
for the target application.

A warning is issued if the measured bottleneck queue buffer space is less than
the bandwidth-delay product of the target path. It is only a warning because
pathdiag cannot determine if the small buffer will cause significantly reduced
performance for the target path. The test reflects the traditional full-BDP rule
for sizing router buffers for TCP [22]. Recent results show that smaller buffers
are adequate for aggregated flows [1,8], but for single flows there are some situ-
ations that might cause full window-sized bursts. In particular, TCP slow-start
naturally requires cwnd/2 buffer space at the bottleneck to avoid prematurely
transitioning to congestion avoidance [6]. Furthermore, if the bottleneck employs
active queue management (AQM) [2] such as RED [7], pathdiag is likely to mea-
sure the threshold for dropping packets rather than the actual buffer space used
to absorb bursts. We are planning future work in this area.

Tester Consistency Checks. Occasionally, either the traffic generator or path-
diag itself might be a bottleneck. For example, there may be unanticipated users
on the server. Pathdiag checks for this and other exceptional events, and reports
them as problems with the tester.

2.3 The Server Framework

The reports generated by pathdiag are ordinary web pages. They can be book-
marked and the URL forwarded to experts for additional analysis. The on-line
documentation stresses this feature [15]. Even relatively näıve users can generate
diagnostic reports that clearly identify a problematic subsystem, and then for-
ward them to people with the resources and authority to take corrective action.

Pathdiag: Automated TCP Diagnosis 159

Web archival of pathdiag reports is also critical to our ongoing improvement of
the tool. We periodically scan various deployed diagnostic servers and retrieve the
reports from the analysis engine and the raw data from the measurement engine.
We inspect selected reports to confirm they agree with our manual analysis
of the raw data. If we discover flaws that are not reported clearly, we make
improvements to the analysis engine. We test the improved analysis engine by
reapplying it to our collection of measurement data, and inspect the re-generated
reports that differ from the original reports. In this manner every user contributes
to our pool of test data, and to refinement of the tool. Our archive currently
holds more than 7000 diagnostic reports.

The sever does not expose any private information about the user except
the name and IP address of the client machine. No user information or system
version information is explicitly exposed, though some operating systems may
be deduced by their performance properties.

3 Strengths and Weaknesses

Symptom scaling makes traditional tools currently used for network diagnostics,
such as ttcp and iperf, completely insensitive to flaws on short paths. Network
experts use these tools over long paths to test for the existence of flaws, but
actually locating the flaws is often a difficult trial and error process. As described
above, Pathdiag’s defining characteristic is its ability to compensate for symptom
scaling. As such, it works best when run on short path sections, and is most useful
for debugging problems close to end systems.

Pathdiag fundamentally relies on active measurement3 and must send a sig-
nificant amount of bulk data to measure the loss rate at the scale of the target
application. In this way it is different than many bandwidth-estimation tools
that obtain results by measuring dispersion of short bursts of traffic without
sending sufficient traffic to measure the loss rate at a scale relevant to AIMD
congestion control.

The measurement algorithms used by pathdiag assume that other traffic across
the tested path is relatively unvarying. Though it will not result in a false pass,
highly variable levels of cross traffic may yield inconsistent results, especially in
measurements of bottleneck buffer size and measured throughput. This can be
largely mitigated by testing a shorter section of the path.

One fairly basic limitation is that the underlying diagnostic TCP stream is
unidirectional, and TCP is intrinsically difficult to instrument from the receiving
end. There are a number of potential solutions to this, which we hope to address
in future work. Users can test the reverse path by running pathdiag at the other
end of the test path. This can be done most easily by using the Internet2 Network
Performance Toolkit [3] live boot CD to run a temporary server on almost any
PC.
3 For specialized uses, pathdiag can be run from the command line as a standalone

tool without the web server server framework. One special use is to manually attach
it to a bulk TCP stream belonging to another application.

160 M. Mathis et al.

Pathdiag cannot diagnose application problems, since the target application
does not participate in the testing process. It is often very difficult to write
applications that can attain high data rates even on ideal long networks. Some
application problems are addressed in related work [10, 20].

4 Closing

Pathdiag is designed to improve TCP performance for the Research and Edu-
cation masses—those with a need for high performance but without the time
or expertise to individually diagnose network problems. It is particularly well
suited for testing at the edges of the network, which is usually where the ma-
jority of performance-reducing flaws occur. Since it compensates for symptom
scaling, pathdiag is able to isolate these near-edge flaws that are very difficult to
diagnose using conventional local diagnostics.

In its most common form, deployment of pathdiag is fairly straightforward. A
single well-connected test server is in a position to provide coverage for an entire
campus or metropolitan network. It is our intent that pathdiag test servers will
ultimately yield significant benefits to both the users and administrators of high-
performance networks.

References

1. Appenzeller, G., Keslassy, I., McKeown, N.: Sizing router buffers. In: Proc. of ACM
SIGCOMM 2004, October 2004, pp. 281–292 (2004)

2. Braden, B., et al.: Recommendations on queue management and congestion avoid-
ance in the internet. In: RFC 2309 (April 1998)

3. Carlson, R.: Network performance toolkit,
http://e2epi.internet2.edu/network-performance-toolkit.html

4. Carpenter, B., Brim, S.: Middleboxes: Taxonomy and issues. In: RFC 3234 (Febru-
ary 2002)

5. Fisk, M., Feng, W.: Dynamic right-sizing is TCP. In: 2nd Annual Los Alamos
Computer Science Institute Symposium (LACSI 2001) (October 2001)

6. Floyd, S.: Limited slow-start for TCP with large congestion windows. In: RFC
3742 (March 2004)

7. Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance.
IEEE ACM Transactions on Networking 1(4), 397–413 (1993)

8. Ganjali, Y., McKeown, N.: Update on buffer sizing in internet routers. ACM
CCR 36(4), 67–70 (2006)

9. Heffner, J.: High bandwidth TCP queuing,
http://www.psc.edu/∼jheffner/papers/senior thesis.pdf

10. Heffner, J., Mathis, M.: Applications and the speed of light: How well do applica-
tions perform on long perfect networks (2007), Web paper:
http://www.psc.edu/networking/projects/applight/

11. Internet2 Land Speed Record, http://www.internet2.edu/lsr/
12. Internet2 NetFlow Weekly Reports, http://netflow.internet2.edu/weekly/
13. Jacobson, V., Braden, B., Borman, D.: TCP extensions for high performance. In:

RFC 1323 (May 1992)

http://e2epi.internet2.edu/network-performance-toolkit.html
http://www.psc.edu/~jheffner/papers/senior_thesis.pdf
http://www.psc.edu/networking/projects/applight/
http://www.internet2.edu/lsr/
http://netflow.internet2.edu/weekly/

Pathdiag: Automated TCP Diagnosis 161

14. Mathis, M.: Windowed ping: an IP layer performance diagnostic. Computer Net-
works and ISDN Systems 27(3), 449–459 (1994)

15. Mathis, M., et al.: NPAD diagnostics servers: Automatic diagnostic server for trou-
bleshooting end-systems and last-mile network problems (2007), Web paper:
http://www.psc.edu/networking/projects/pathdiag/

16. Mathis, M., Heffner, J., Raghunarayan, R.: TCP extended statistics MIB. In: RFC
4898 (May 2007)

17. Mathis, M., Heffner, J., Reddy, R.: Web100: Extended TCP instrumentation for
research, education and diagnosis. Computer Communications Review 33(3), 69–79
(2003)

18. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP selective acknowledgement
options. In: RFC 2018 (October 1996)

19. Mathis, M., Semke, J., Mahdavi, J.: The macroscopic behavior of the TCP conges-
tion avoidance algorithm. Computer Communications Review 27(3), 67–82 (1997)

20. Rapier, C., Stevens, M.: High performance SSH/SCP - HPN-SSH (2007),
http://www.psc.edu/networking/projects/hpn-ssh/

21. Shalunov, S., Carlson, R.: Detecting duplex mismatch on ethernet. In: Dovrolis, C.
(ed.) PAM 2005. LNCS, vol. 3431, pp. 135–148. Springer, Heidelberg (2005)

22. Villamizar, C., Song, C.: High performance TCP in ANSNET. Computer Commu-
nications Review 24(5), 45–60 (1994)

23. New networking features in Windows Server 2008 and Windows Vista (2008),
http://technet.microsoft.com/en-us/library/bb726965.aspx

http://www.psc.edu/networking/projects/pathdiag/
http://www.psc.edu/networking/projects/hpn-ssh/
http://technet.microsoft.com/en-us/library/bb726965.aspx

	Introduction
	Motivation

	The Pathdiag Tool
	The Measurement Engine
	The Analysis Engine
	The Server Framework

	Strengths and Weaknesses
	Closing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

